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aJožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; bFaculty of Electrical Engineering, University of Ljubljana, Tržaška
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The synthesis of plant-wide control structures is recognised as one of the most important production-management
design problems in the process industries. This article proposes a closed-loop control structure utilising production
performance indicators (pPIs) as a possible solution to simplify this problem. pPIs represent the translation of
operating objectives, such as the minimisation of production costs, to a set of measurable variables that can then be
used in a feedback control. The idea of closed-loop control at the production-management level using pPIs as
referenced controlled variables was implemented on the procedural model of a production process for a
polymerisation plant, and two types of controllers were tested: an experimental controller based on look-up tables,
and an advanced model predictive controller (MPC). Preliminary results show the usefulness of the proposed
methodology.
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1. Introduction

Competitiveness in the global economy has changed
the basic method of production from planned produc-
tion to order-driven production. This has introduced
new demands related to flexible production, and
increased production efficiency, fast responses to
customer demands, and a high and uniform quality
of products and services (Holt 1999, Dangelmaier et al.
2005). Nowadays, an enterprise management relies on
an online estimation of the current state, efficient
decision making and the appropriate execution of
decisions (Kaplan and Norton 1992, Lee and Lai 1997,
Folan and Brown 2005). In this investigation an
important role is given to the interconnection and
coordination of various management activities (related
to business organisation and production), as well as to
the computer support and information support of
these activities.

The demands for efficient and flexible production
have established the importance of an autonomous
production-management level acting as a kind of
interface between the requests from the business-
management level and the factory-floor production
control, as presented in Figure 1 (Anthony 1965,
Hales 1989, Jovan et al. 1998). At the production-
management level at least two essential activities
are performed: (i) the transformation of a company’s

objectives into results and (ii) the optimisation of
production. To fulfil these two basic tasks successfully,
a production manager’s decisions must rely on
accurate and online information.

Discrete and process manufacturing are terms that
are often used to describe the nature of manufacturing
operations where the process industry has several
specifics compared with discrete industry that make it
both complex and uncertain (Taylor et al. 1981, Jovan
et al. 1998). The complexity arises primarily from the
required linking of various sub-processes, each of
which affects the quality of the final product. Each
subprocess requires the maintenance of a certain
number of process parameters, i.e. pressure, tempera-
ture, flow, viscosity, etc., which leads to a large number
of operation-level sensors, actuators, controllers and
programmable controllers that must operate both
safely and reliably. The uncertainty of the process
industry is expressed above all in product quality.
Both uncertainty and complexity have a great
influence on production management in industries
of this type. The main problems regarding process
control and the production manager’s decision-
making process are how to extract the relevant
information from huge amounts of disposable pro-
duction data for the correct decision-making and
how to design a plant-wide production-control system
that is capable of maintaining near-optimal production
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and of eliminating a production manager’s/operator’s
subjective assessments.

Forza and Salvador (2001) discuss the need for
information flow and redistribution of management
responsibility among all the entities in the management
structure in order to achieve an efficient production.
The authors also claim that the management subjects,
e.g. the production manager, must have beside the
knowledge about production also the relevant and up-
to-date information about the current production and
quality of final products. The introduction of perfor-
mance indicators (PIs) technique is a possible solution
to overcome the problem of huge amount of produc-
tion data and unbalanced realisation of economical,
technological, safety, and other production goals.
According to Fortuin (1988), PIs ‘provide management
with a tool to compare actual results with a pre-set
target and to measure the extent of any deviation’. A
PI can also be defined as ‘a variable that quantitatively
expresses the effectiveness or efficiency, or both, of a
partial or a whole process, or a system, against a given
norm or target’ (Lohman et al. 2004).

The concept of PIs can take many forms. Neely
et al. (1995) used more general terms: performance
measures (PMs) and the performance measurement
system (PMS). In this literature review, PMs that are
related to quality, time, costs and flexibility are
presented. Folan and Brown (2005) have presented
the concept of evolution from PM to structural and
procedural PM frameworks. PMS is the union of these
two frameworks into one system (e.g. BSC, Business
Process Reengineering BPR). Bourne et al. (2000)
suggest that the implementation of the PMS, based on
PIs, should be divided into three main phases: (i) the
design of the PIs (ii) the implementation of the PIs and

(iii) the use of the PIs. The implemented PMS should
also include a process for periodically reviewing and
revising the complete set of PIs. This should be done to
coincide with the changes in the competitive environ-
ment, the strategic direction or organisation and the
structure of the production processes (Veleva and
Ellenbecker 2001). There are many other methods for
defining and implementing PIs in production. In
Ghalayini et al. (1996) an integrated dynamic perfor-
mance measurement system (IDPMS) that integrates
the management, the process-improvement teams and
the factory shop floor is presented. Suwignjo et al.
(2000) developed quantitative models for PMS
(QMPMS) that can be used to identify the factors
affecting performance and their relationships, structure
them hierarchically, quantify the effect of the factors
on performance, and express them quantitatively.
Another method to design and establish a PI system
is defined with ECOGRAI (Tatsiopoulos and Panayio-
tou 2000).

Once the production Performance Indicators
(further on pPIs) are defined it is necessary to
incorporate them into production-management sys-
tem. pPIs can be utilised in a production decision
support system (DSS), which helps the production
manager to estimate how well the production strategy
and goals are attained and what should be done to
improve the results. In this paper another approach is
presented, where pPIs are used as referenced, con-
trolled variables and are integrated directly into the
plant-wide closed-loop control system. The proposed
production control system is divided into two hier-
archical layers: the optimisation layer, where produc-
tion costs are optimised and the reference values for
the pPIs are defined, and the lower production control
layer, which is responsible for maintaining the current
pPIs values close to their reference values. During the
research a production-process model and a simulator
of the polymerisation plant were designed. Two types
of production controllers were tested on this simulator:
a look-up-table-based controller and a model predic-
tive controller (MPC). The results obtained from
several simulation runs show that the proposed pPIs-
based production-control system is able to control the
production process and has great potential for further
research and implementation in practice. The pPIs
used in the paper are rather basic. The main focus was
on testing the suitability of the proposed control
scheme. A more elaborate pPI design, e.g. based on
IDPMS, QMPMS or ECOGRAI, might improve the
control performance and could be the subject of
further investigations.

The topics elaborated in this article are organised
as follows: In Section 2 the closed-loop production-
management paradigm is explained. In Section 3

Figure 1. Data flow between business-, production- and
process-management levels.
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a semi-batch production process is presented, includ-
ing its process model and the proposed pPIs. Section 4
presents the implementation of closed-loop control on
the production model and its simulation results. The
conclusions follow in Section 5.

2. Closed-loop production-management paradigm

In the management system of a process-production
enterprise, automated closed-loop control structures
are massively used at the process level; however, they
are less formal and seldom automated at the produc-
tion level, and almost never automated at the business
level. At the production-management level, the main
mission of a production manager is to monitor the
current performance of the technological process by
observing the most important pPIs, e.g. the utilisation
of production capacities, the quality of the raw
materials and the product, the stocks, the available
energy sources, etc. In the case when the pPIs deviate
from expected values, production managers have to
make on-the-spot adjustments to the direct inputs in
the production process so as to achieve the desired
global production goals. From this point of view they
are performing the role of a hierarchically higher
controller, while the task of the control systems on the
lower shop-floor level is to execute process-control
actions in accordance with the production manager’s
demands, all in order to achieve the desired behaviour
of the whole production system. Thus, the optimisa-
tion of a production system can be achieved by
properly defining the set-points’ values for the most
important production parameters – the pPIs. These
values are adjusted in accordance with the current
plans and other requests from the business manage-
ment level, the current situation in the production
process and the accepted production strategy (e.g. the
production of products with excellent quality, the most
cost-effective operation, etc).

The idea of hierarchical control levels is related to
the so-called self-optimising control that was presented
by Skogestad (2000, 2004). Generally speaking, for
many systems (companies, chemical processes, biolo-
gical systems, etc) we have available degrees of
freedom (decisions), u, that we want to use in order
to optimise the system operation. With the proper
selection of the controlled variables, c, and the set-
points, cs, for these variables it is possible to operate in
a near-optimal regime just by preserving these vari-
ables at defined set-points. With this approach the
complex optimisation problem can be translated to a
simpler control problem. Figure 2 shows the described
self-optimising control scheme.

While the closed-loop is a well-established para-
digm in the control domain (Levine 1996), the
complexity of the plant-wide control system and the
problem of choosing proper manipulating and con-
trolled variables from the number of available signals
represent the main issue in control design. The self-
optimising concept in relation to the pPIs solves this
problem in a way that fits in the classic production-
control structure.

Figure 3 presents the generalised, hierarchical
control-loop scheme for the whole production process
based on the self-optimising control approach and
pPIs. Plant-wide control structure consists of several
layers operating on different timescales and levels
of hierarchy. On the optimisation level, represented
by the upper control loop, the production manager
optimises the production process by selecting appro-
priate reference values for the pPIs in the control
loop on the lower production-control level. Based on
the definition of the pPIs, their values (K) can be
calculated online from measurable process data.
The model describing the physical behaviour of the
process projected on pPIs is derived from the archived
process data (y). If there were no changes in the
process environment, there were constant measurable

Figure 2. Implementation of the optimal operation of a process with separate layers for optimisation and control (Skogestad,
2004).
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influences, d, and there were no unmeasurable dis-
turbances, then a suitably fixed setting, u, would solve
the (optimal) control on the production level. As this is
never true, an appropriate strategy to respond to the
perturbations from the environment by readjusting the
manipulative inputs (u) is needed. Basically, this
problem converts into the constrained-optimisation
problem. The translation of the demands from the
business level into the ideal pPIs K* is conditioned by
the economic/cost model of the underlying process.

According to the proposed closed-loop control
scheme, where the control problem is decomposed on
two hierarchical levels, two different models of
production usually need to be developed. On the
optimisation level a production-costs model (CM) has
to be developed to support the production managers’
decisions for the most suitable set-point values of the
observed pPIs. Also, the design of the production
controller (e.g. model-based control) on the lower
control level usually needs a process model (M).

3. Case-study production process

The presented case study addresses the closed-loop
control of a production process in a polymerisation
plant. The chosen batch-production process is a typical
representative of process-oriented production. The

installed DCS and SCADA systems do not handle
the production process completely automatically, and
not all the production-process variables are available
online for use in a control system. For that reason we
have decided to develop a procedural production-
process model of the case-study production process.
The next reason for this decision was to enable fast
simulation runs of various regimes of the case-study
production and to avoid interfering with the actual
production process. The developed model of produc-
tion was further used to design a production cost
model as part of a plant-wide control structure and to
evaluate the two feedback-based production-control
approaches.

3.1. Description of the polymer-emulsions production
process

The production process consists of three main reactors
and two supplementary reactors, dosing vessels,
storage tanks and equalisers that are used for the
production of various polymer-emulsions. The tech-
nological process is defined by a recipe: a sequence of
operations that must be performed for the production
of a particular product. Various recipes performed
simultaneously can share some common resources.
To ensure good utilisation of the equipment and

Figure 3. Generalised hierarchical scheme of a closed-loop production control.
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simultaneously satisfy safety requirements, technolo-
gical and organisational constraints, proper scheduling
of the production jobs must be defined.

The polymerisation process for the production of
one batch of emulsion can be represented by the state-
transition diagram that is depicted in Figure 4 and
consists of three main stages: (i) the preparation of raw
materials, (ii) the reaction process and (iii) the product
analysis and reactor discharge. The optional stage of
the product equalisation takes place in the equalisator.

The main characteristic of this batch-production
process is the production of successive batches using a
variety of equipment in which intermediate products
appear during each batch stage and must be used in
successive stages as soon as possible. In each step
certain physical actions (heating, blending) or chemical
reactions are involved. As already mentioned, the
installed control equipment does not handle the
production process completely automatically, which
affects the quality of the product, the duration of a
single batch and, consequently, the utilisation of the
reactors and the production process itself. The
increased production rate can cause an operator to
become too busy and his/her ability to control the
production efficiently can be reduced.

The utilisation of the whole production process
depends on the execution of a list of production jobs
(the batch-production process, cleaning the reactor,
equalising a few batches of the same product, etc.),
which in the production process is handled manually.
The production of batches of equal products together
in each reactor reduces the set-up times that appear in

the case when the products from one reactor are mixed
(additional equipment cleaning is needed, etc.). Speed
of production and quality of raw materials have a large
influence on the product quality, production costs and
efficiency.

3.2. Production process model

The demands on the model of the case-study produc-
tion process have many specifics that are not easy to
implement in commercially available modelling and
simulation tools. To avoid this trap, the model was
designed in an academically well-established Matlab,
Simulink and Stateflow simulation environment. The
simulated data are stored in an MS Access Database
and are available for online and offline processing.

The developed production process model of the
polymerisation plant represents the production process
and its attributes (utilisation of resources, production
gain, product quality, production costs, etc) in the
form needed for production management. This means
that we have modelled physical realities of the process
as well as production costs and quality aspects of the
process.

The model is structured in six logical units that are
interconnected as depicted in Figure 5:

. Basic equipment models, created in Simulink,

. Procedural control of the equipment, created in
the Stateflow toolbox,

. Dedicated Matlab functions,

. Graphical user interface (GUI),

. pPIs model,

. External MS Access database for data storage.

The equipment models are simple Simulink models
that incorporate input/output (I/O) control signals.
The Simulink models of the chemical reactors do not

Figure 4. State-transition diagram of the polymerisation
process. Figure 5. The structure of the production process model.
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include the exact mathematical formulation of the
chemical reactions involved in the polymerisation
process (they are too complex and, at this level of
interest, they are not necessary), but they do include
the equations of temperature, flow and level dynamics.
The Stateflow chart uses dedicated Matlab functions to
evaluate other properties (e.g. the product quality) of
the chemical reactions. These functions were designed
and calibrated on the basis of statistical analyses of the
production data and on knowledge about the produc-
tion process obtained by interviewing production
operators and technologists. For example, the quality
of the product is estimated from the normalised
factors representing different quality aspects of pro-
duction that are contained in one normalised factor for
each finished batch, as represented in Equation (1).

QP ¼ qRM � qS � qRP � qPS � qTC ð1Þ

subject to:

QP – normalised quality factor for a batch of a
single product

qRM – normaised factor, representing the quality
of the raw materials

qS – normalised factor, representing the influence
of the stops in production

qRP – normalised factor, representing the influence
of the reactor’ purity

qPS – normalised factor, representing the influence
of the production speed

qTC – normalised factor, representing the quality
of the temperature control

The normalised factor for the influence of the
reactor’s purity is estimated using Equation (2)

qRP ¼ 1þ 0:02ð Þ�n ð2Þ

Figure 6. GUI for the polymerisation-production process simulator.
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subject to:
qRP – the influence of the reactor’s purity
n – the number of batches since the reactor has

been cleaned.
Production-process control logic was implemented

using Stateflow charts, and with them the I/O control
signals are simulated.

The main purpose of designing the production-
process model was the capability of simulating the
execution of scheduled jobs in production and of
investigating the plant-wide control algorithms. The
production jobs are scheduled according to the demands
from the business management level (due times, desired
product cost and quality, etc) and other production
constraints (production rate, availability of resources,
etc). This production job schedule represents an input
variable in the production-processmodel. The other two
input variables that define the productionprocess are the
Production speed and the Raw materials’ quality, and
these are described in more detail in Section 4.1.

The graphical user interface (GUI) (Figure 6)
enables the user to simulate the production process;

the user can manipulate online the job schedule, the
production speed and the raw materials’ quality. On
the other hand, the GUI presents the current state of
the equipment (reactors, equalisator, etc) and enables
statistical analyses and a visual representation of the
historical production data as well as the pPIs.

3.3. pPIs for the polymerisation production plant

For the case-study production process presented in this
article the Productivity, Product Quality and Produc-
tion Costs pPIs were selected to obtain information
about the current status of the production process.
None of these pPIs is directly measurable, but an
estimation of their current values can be made using
the combination of the measurable output production-
process variables.

The procedure for the pPIs calculation has two
characteristic parameters:

. The pPIs’ calculation frequency fPI: this defines
the time frames in which the pPIs are evaluated.

Figure 7. Hierarchical closed-loop control scheme for the polymerisation.
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. The pPIs’ calculation window TPI: this time
window defines which production history data
are used for the evaluation of the pPIs.

These two parameters have a special effect on the
evaluation of the pPIs. For example, if the calculation
window TPI is increased, the dynamics of the
calculated pPIs are decreased and vice versa. In our
case the simulation runs were performed with a
calculation frequency of one evaluation per 5 hours,
and with the size of the calculation window being 100
hours. These time constants were chosen empirically,
on the recommendations of the factory technologists
and on the basis of simulation results.

3.3.1. Productivity

For the described production process, Productivity P
(kg/h) is defined as the amount of all products that
were produced in a certain production period, and this
amount is defined with Equation (3)

P ¼
Pn

i¼1 ki �Mi

TPI
; ð3Þ

where ki represents the correction factor; Mi is the
batch quantity (kg); TPI is the calculation window (h);
and n is the number of observed batches. We take into
consideration all the batches that were completely or
partly produced in the defined calculation window and
calculate the average amount of products that was
produced in an hour. The average batch production
time (cca. 15 h) is significant in comparison with the
calculation window (TPI ¼ 100 h). In the case that the
batch is not completely produced in the calculation
window because the production of the batch started
before the calculation window is started or because the
batch is still in progress, it is useful to introduce the
correction factor k, which defines the portion of each
batch-production time that fits into the observed
calculation window. When the Productivity indicator
is evaluated, such batches are only considered with the
corrected quantity.

3.3.2. Product quality

Another important indicator of production efficiency is
the Product quality QP (no unit), which is calculated
as the mean value of the normalised quality factors of
the batches that were completed in the observed

Figure 8. Product quality PI in relation to Raw materials’ quality and Production speed.
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calculation window TPI. Because the quality factors
are normalised, this pPI has no unit. The mean
product quality is calculated with Equation (4)

QP ¼
Pn

i¼1 Qi

n
ð4Þ

where Qi (no unit) is the normalised quality of a single
batch and n is the number of observed batches that are
partly or completely produced in calculation window.

3.3.3. Production costs

The production costs (Eur/kg) consist of variable costs
(raw-materials costs, energy costs, and other operating
costs) and fixed costs (amortisation of the equipment,
labour costs, etc). The mean production costs (per
kilogram of final product), C, are calculated as the sum
of all the costs related to production in the observed
production period divided by the total amount of
products produced in that production period (Equa-
tion (5))

C ¼
Pn

i¼1 ki � Ci þ TPI � CfPm
j¼1 kj �Mj

ð5Þ

where ki is the correction factor for the job costs; Ci is
the job cost (Eur); TPI is the calculation window (h); Cf

is the rate of fixed costs per production hour (Eur/h); n
is the number of the observed jobs; Mj is the batch
quantity (kg); kj is a correction factor for the batch
quantity; and m is the number of observed batches.
Correction factors are evaluated in the same manner as
in Section 3.3.1. The estimation for production costs is
helpful for the production costs optimisation.

4. Closed-loop control of the polymerisation plant

To control the modelled process a control system was
designed, with the control being performed on different
levels of decisions. The minimisation of production
costs is the highest priority, and the majority of control
actions are made to fulfil this demand. The demands
from the business-management level are expressed in
the production schedule and the desired production
costs. The production jobs schedule represents an input
variable that has a significant impact on the pPIs, but it
is performed manually once or twice a week, and for
that reason there is no need to use it in direct closed-
loop control.

Figure 9. Productivity PI in relation to Raw materials’ quality and Production speed.
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Figure 7 represents an adapted version of the basic
hierarchical control structure from Figure 3. On the
process-optimisation level the cost optimisation is
performed by the production manager, who is using
the current value of the Production costs pPI, the job
schedule and a production cost model to define the
optimal set points for the Product quality and
Productivity pPIs. The production costs’ model is
constantly updated with current data and its simula-
tion runs can provide vital information for defining the
appropriate reference values for the chosen pPIs. Thus,
a production costs’ model acts as a kind of decision
support system (DSS) for the definition of references
for the pPIs. Once the pPIs’ reference values are
defined they are maintained by the production
controller, which controls the execution of the
production jobs’ schedule by adjusting the available
degrees of freedom for the chosen production pro-
cesses, which are Production speed and Raw materials’
quality.

4.1. Production cost optimisation

To be able to define a production costs’ model, a
sensitivity analysis of the pPIs has to be made.

Figures 8 and 9 describe the dependence of the Product
quality and Productivity pPIs on the process input
variables (Production speed and Raw materials’ quality)
for a fixed batch schedule. The pPIs were evaluated at
20 working points and connected together by extra-
polation. The Production speed defines the production
rate, and is normalised. During normal production
there is enough time for all the production cycles to be
finished in the required time. An increased production
speed represents an increased production rate, where
some production phases (e.g. vacuuming) have to be
shortened, and this normally decreases the product
quality and increases productivity. When the produc-
tion speed is increased, the productivity is increased,
but on the other hand, the operator’s ability to control
the reactor temperature is decreased, which normally
decreases the product quality and vice versa. The
efficiency of the production process is also affected by
disturbances; the most significant are equipment fail-
ures, delays in the production process, variations in the
quality of the raw materials, new high-priority orders,
a shortage of raw materials on the market, illness, etc.
Some of these disturbances are included in the model
as random events. The Raw materials’ quality is also
presented as a normalised entity, where the value 1

Figure 10. Production costs in relation to Productivity and Product quality pPIs for unified production.
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represents a quality of raw materials that is most
suitable in relation to cost/performance aspects. Good
Raw materials’ quality (1.2) enables the production of
products with sufficient quality in worse production
conditions, which are normally represented during an
increased production speed. Extreme working condi-
tions, like high Production speed (1.2) and low Raw
materials’ quality (0.8), can result in batches of

insufficient quality, which then have to be recycled.
This introduces additional analyses and work that are
connected with delays in the production process,
increased production costs and, consequently, lower
Productivity, as can be seen in Figure 9.

Figures 10 and 11 show the relation between
Production costs, Product quality and Productivity
pPIs, i.e. the dependence of the Production costs

Figure 12. Internal closed-loop control scheme based on look-up tables.

Figure 11. Production costs in relation to Productivity and Product quality pPIs for mixed production.
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regarding Productivity and Product quality. Figure 10
shows the results for unified production (a production
where a series of batches of the same or similar final
products are performed on each reactor – production
for stock) and Figure 11 shows the results for mixed
production (a production where products are changing
from batch to batch on each reactor – production on
demand). The production of batches of equal products
together in each reactor reduces the set-up times that
appear in the case when the products from one reactor
are mixed (additional equipment cleaning is needed,
etc). Both figures exhibit a noticeable global minimum
where the production costs are minimal. In the unified
production the Productivity pPI value ranges from 800
to 1100, whereas in the mixed production it ranges
from 650 to 1050 kg/h. The region with low Product
quality and Productivity is not well defined because it is
connected with the frequent production of bad batches
and represents a working region that has to be avoided
during normal production.

Performed PI sensitivity analysis support the
idea of closed-loop control based on pPIs. These

dependences can be further used to suggest production
manager defining exact reference values for the
Productivity and Product quality indicators. This is
done by proper PI dependence that is relevant for the
actual production schedule, and this activity is
represented by the upper control loop in Figure 7.

4.2. Design of the production controller

As mentioned previously, optimal operating conditions
can be ensured if selected pPIs (Productivity and
Product quality) are being controlled at a predefined
referenced value. The production controller performs
the monitoring and controlling of these two pPIs to the
reference values, defined by the optimisation level.

The production controller is placed in the lower
hierarchical control loop in Figure 7. To design a
controller a model of the production process is needed.
The part that has to be controlled is a multivariable
system that can be linearised for a commonly used
working area. It has two input variables (Production
speed and Raw materials’ quality) and two output

Figure 13. Production PIs’ control using a look-up-table-based controller.
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variables (Productivity and Product quality). In the
remaining part of the paper, two controllers will be
presented:

. A controller based on look-up tables,

. A multivariable predictive controller (MPC).

A controller based on look-up tables simulates the
production managers’ control actions in one working
region of the production process. The controller
consists of two look-up tables, the first manipulates
Production speed S, and the second one manipulates
Raw materials’ quality QRM according to the control
error (Figure 12). P represents the Productivity pPI and
QP represents the Product quality pPI. The control
scheme also includes control disturbances that are
always present in real systems. The look-up tables G1

and G2 were defined on the basis of a sensitivity
analysis of the production-process model and on the
expertise of experienced technological staff. PR and
QPR are reference values for controlled pPIs. The first
diagram in Figure 13 shows the batch schedule for the

production of Product 1 in Reactor R-A, Product 2 in
Reactor R-B and Product 3 in Reactor R-C. The
spaces between batches represent reactor cleaning
procedures and bottlenecks. The second diagram
shows the trace of the manipulated variables during
the experiment and the remaining three diagrams show
the traces of the controlled pPIs.

The main drawback of the presented controller is
the control error in steady state, which can be observed
in Figure 13 when the set-point for the Productivity pPI
is different from 1000 kg/h. This is a consequence of
the property of the presented controller that is in fact a
P-controller with variable gain.

In the next step, the model-based control strategy
was developed. This model-based strategy has to
operate in an online regime and has to account for
any natural physical limitations. The controller has
to recognise the interaction between multiple inputs.
Model predictive control (MPC) is well suited to
solving this constraint problem (Morari and Lee
1999, Qin and Badgwell 2003), and multivariable
process control using MPC has been thoroughly

Figure 14. Batch schedule, input and output variables for one simulation run for normal production.
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studied (Maciejowski 1989, Škrjanc et al. 2004).
MPC, or receding horizon control, refers to a class
of control algorithms in which a dynamic process
model is used to predict and optimise process
performance.

The designed production-process model, presented
in Section 3, is not suitable for the MPC construction,
and for that reason a simplified, dynamic, linear
process model was obtained by using the identification
process over the earlier developed production-process
model. In the identification process, input-output data
that were obtained from several simulation runs were
used. During the identification process it was assumed
that the process is linear. In such a situation an
approach where one input is changing while another
one is fixed can be used. In the first experiment the Raw
materials’ quality was fixed and the influence of
Production speed on the outputs of the system
(Productivity and Product quality) was studied. The
same experiment was repeated, but in this case the
Production speed was fixed and the influence of Raw
materials’ quality was studied. The model parameter

estimation was made using the identification method in
which the least-square criterion was minimised (Levine
1996). The input-output dependencies are therefore
given with first-order models (Equation (6)), where the
sampling time TS was 5 hours.

G ¼
31:84

z�0:938
�4:43
z�0:834

�0:04
z�0:932

0:052
z�0:94

2
4

3
5; TS ¼ 5h ð6Þ

This multivariable model G was used for the MPC
controller design, where the MPC Toolbox from the
Matlab environment (Bemporad et al. 2006) was used.

The main challenge was the tuning of MPC
controller’s cost function parameters. The MPC tool-
box supports the prioritisations of the outputs. In this
way, the controller can provide accurate set-point
tracking for the most important output, sacrificing
others when necessary, e.g. when it encounters
constraints. In our case the controller has to consider
the input and output constraints as defined by
Equation (7). In order to eliminate the production of

Figure 15. Batch schedule, input and output variables for the case when the production schedule is changed during the
simulation run.
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batches of insufficient quality we had to constrain
the lower limits of the Raw materials quality and
Product quality. Production speed and Product quality
represent physical constraints of the production
process.

0:5 � S � 1:3

0:85 � QRM � 1:2

and 700 � P � 1300

0:87 � QP � 1:3
ð7Þ

Different weights were used to prioritise the input and
output variables. To solve the optimisation problem, a
prediction horizon of 100 h and a control horizon of
40 h were used. The MPC toolbox uses the Quadratic
Programming solver to solve the optimisation pro-
blem, where the bounds of the constraints are finite
(Bemporad et al. 2006).

Closed-loop control was tested in several simula-
tion runs. Figure 14 presents the results of an
experiment where the set-point for Productivity was
changed two times and the set-point for Product
quality was changed just once. In the experiment a
normal batch schedule for the production of three
products, each of them produced in one reactor, was
used. MPC managed to achieve the prescribed set-
points for the controlled pPIs (Productivity and
Product quality). With the increasing set-point for the
Productivity pPI the Production costs pPI is also
increasing, and with the decreasing set-point for the
Product quality pPI the production costs decrease. The
Production costs pPI is not as smooth as the other two
pPIs, which reflects the influence of the stops in
production on the production costs. With an increased
time horizon for the pPI evaluation such leaps in the
pPI values are reduced, but also the pPI’s dynamic is
reduced, and consequently the performance of the
MPC controller is also reduced. From the pPI
responses on changed set-points for Product quality
and Productivity pPIs the time constant of such a pPI
model can be estimated at around 50 h.

Figure 15 presents the situation when the produc-
tion schedule is changed during the simulation. In the
middle of the experiment the Productivity set-point is
very high and an extremely mixed production is
applied to the production process. Even in the case
when the Production speed is at a maximum for almost
all the time the Productivity pPI cannot reach the
prescribed set-point. A closer look at Figure 11 reveals
that the set-point for the Productivity pPI is set far
outside the manageable working region. The MPC
controller managed to reach the set-points for the
controlled pPIs in the remaining part of the experi-
ment. The presented results show that the designed

MPC controller is robust enough to control the
production of different types of batch schedules.

5. Conclusions

Plant-wide control systems should ensure that the
production process is constantly working in near
optimality. This article uses an already-established
approach to measuring and presenting the achieved
production objectives in the form of pPIs and proposes
the incorporation of pPIs into closed-loop production-
control systems.

The proposed production control system consists
of hierarchically organised optimisation and control
parts. In this way the production control concept and
the role of a production manager are slightly changed;
instead of monitoring and controlling several tens and
hundreds of process variables at a low production
level, a production manager monitors and controls
only a few major production PIs with the aim of
achieving the most important implicit production
objectives, e.g. predefined product quality, high
productivity and minimal production costs. The
proposed idea was tested on a procedural model of a
polymerisation production plant. The production
manager handles the upper optimisation control layer
where the set-point values for the Productivity and
Product quality PIs are defined by using the production
costs model. The pPIs are controlled to these set-points
by the control-loop of the production controller (the
lower layer of the production-control system), where
two types of control strategies were tested: a controller
based on look-up tables and a model-based controller
(MPC). The utilisation of the MPC controller in the
closed-loop control of the production process model
returned better results. The testing of the presented
production-control system was based on several
simulation runs of the developed polymerisation
production process model. The next step is the
implementation of the developed production-control
system in a real production plant, where first the
availability of all the production data needed for an
online calculation of the chosen pPIs has to be ensured.
For this reason the existing DSC and SCADA systems
should be upgraded to provide the additional produc-
tion-process data.
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